Ultrastructural properties of ciliary zonule microfibrils.
نویسندگان
چکیده
Conventional electron microscopy and rotary shadowing techniques have provided conflicting interpretations of microfibril ultrastructure. To address this issue, we have used quick-freeze deep-etch (QFDE) microscopy to obtain 3-dimensional surface views of microfibrils that have not been fixed, dehydrated, or stained with heavy metals. By this approach, microfibrils appear as tightly packed rows of bead-like subunits that do not display the interbead filamentous links seen by other methods. At regular 50-nm intervals along the microfibril length, a larger bead is often recognized which tends to be aligned with those from adjacent microfibrils when the microfibrils are in bundles. This evidence of organized lateral associations of microfibrils is supported by the observation of small filaments that span between the adjacent microfibrils. When QFDE microscopy was used to examine microfibrils exposed to sonication, partially dissociated microfibrils with the more typical "beads on a string" appearance were observed. Beads are also seen alone, as monomers, often with an array of small thread-like filaments extending from the bead in a "crab-like" manner. Our results suggest that the beads on a string appearance of sonicated microfibrils may result from a partial loss of protein components from the interbead domains, thus leading to exposure of a filamentous substructure. It is possible, therefore, that this phenomenon might also contribute to the beads on a string appearance of microfibrils seen using other electron microscopy techniques.
منابع مشابه
Microfibril-Associated Glycoprotein-1 Controls Human Ciliary Zonule Development In Vitro
The ciliary zonule in the eye, also known as Zinn's zonule, is composed of oxytalan fibers, which are bundles of microfibrils consisting mainly of fibrillin-1. However, it is still unclear which of the microfibril-associated molecules present in the ciliary zonule controls oxytalan fibers. Microfibril-associated glycoprotein-1 (MAGP-1) is the only microfibril-associated molecule identified in t...
متن کاملDevelopment, composition, and structural arrangements of the ciliary zonule of the mouse.
PURPOSE Here, we examined the development, composition, and structural organization of the ciliary zonule of the mouse. Fibrillin 1, a large glycoprotein enriched in force-bearing tissues, is a prominent constituent of the mouse zonule. In humans, mutations in the gene for fibrillin 1 (FBN1) underlie Marfan syndrome (MS), a disorder characterized by lens dislocation and other ocular symptoms. ...
متن کاملHuman eye development is characterized by coordinated expression of fibrillin isoforms.
PURPOSE Mutations in human fibrillin-1 and -2, which are major constituents of tissue microfibrils, can affect multiple ocular components, including the ciliary zonule, lens, drainage apparatus, cornea, and retina. However, the expression pattern of the three human fibrillins and an integral microfibrillar component, MAGP1, during human eye development is not known. METHODS We analyzed sectio...
متن کاملFibrillin and the eye.
The glycoprotein fibrillin is the principal component of the ciliary zonule and has an important role in the strength and elasticity of ocular connective tissues. Fibrillin polymers form the structural scaVold of extensible microfibrils which are present in ocular elastic tissues and are arranged in parallel bundles to form the zonular fibres. These fibrillin-rich microfibrils are morphological...
متن کاملThe fine structure of the ciliary zonule and ciliary epithelium. With special regard to the organization and insertion of the zonular fibrils.
The ciliary zonule has been studied toith the electron microscope in the eye of the monkey, cow, and man, with the use of both thin sections and negatively stained specimens. The zonule consists of bundles or sheets of tubular fibrils, 110 to 120 A in diameter. When loosely aggregated, they show a faint cross-striation without a clear-cut repeat pattern; when closely packed, they display an evi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of structural biology
دوره 139 2 شماره
صفحات -
تاریخ انتشار 2002